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Abstract. Mixtures of Hidden Markov Models (MHMM) are widely
used for clustering of sequential data, by letting each cluster correspond
to a Hidden Markov Model (HMM). Expectation Maximization (EM) is
the standard approach for learning the parameters of an MHMM. How-
ever, due to the non-convexity of the objective function, EM can con-
verge to poor local optima. To tackle this problem, we propose a novel
method, the Orthogonal Mixture of Hidden Markov Models (oMHMM),
which aims to direct the search away from candidate solutions that in-
clude very similar HMMs, since those do not fully exploit the power
of the mixture model. The directed search is achieved by including a
penalty in the objective function that favors higher orthogonality be-
tween the transition matrices of the HMMs. Experimental results on
both simulated and real-world datasets show that the oMHMM consis-
tently finds equally good or better local optima than the standard EM
for an MHMM; for some datasets, the clustering performance is signifi-
cantly improved by our novel oMHMM (up to 55 percentage points w.r.t.
the v-measure). Moreover, the oMHMM may also decrease the compu-
tational cost substantially, reducing the number of iterations down to a
fifth of those required by MHMM using standard EM.

Keywords: Hidden Markov Models · Mixture Models · Mixture of Hid-
den Markov Models · Expectation Maximization · Orthogonality · Reg-
ularization · Penalty.

1 Introduction

Clustering of sequential data is an important machine learning task with a wide
range of applications from biology to finance. Various methods have been ap-
plied for this task, including feature-based methods, deep-learning approaches
and model-based methods [1, 6, 19]. Model-based methods have the advantages
of being probabilistic, interpretable, providing measures of uncertainty, as well
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as allowing for rapid prototyping [7, 33]. Motivated by these advantages, we fo-
cus on model-based approaches; more specifically on the Hidden Markov Model
(HMM), or a Mixture of Hidden Markov Models (MHMM), introduced in [29].
They have been applied to tasks such as time series clustering, music analysis,
motion recognition, handwritten digit recognition, as well as to problems within
finance and biology [9, 12, 13, 16, 30, 23, 34]. In recent years, various methods have
been proposed to enhance an MHMM with respect to, e.g., time complexity and
sparsity of the model [24, 30], when using Expectation Maximization (EM) [10],
which is the standard inference approach when clustering based on an MHMM
[6]. However, since EM maximizes a non-convex objective function, it can lead
to poor local optima; a proper initialization plays a crucial role here [6, 8]. More-
over, singularity in mixture model estimation is also a potential problem; i.e., a
cluster can be collapsed into a single data point [6]. To tackle the first problem,
it is common to consider several random initializations [6, 8]. For the second
problem, the inclusion of a penalty or prior on the optimization variable has
been suggested as a solution [6]. In general, to enhance the predictive power of
a model, an HMM in this context, penalization can be applied on EM [20]; con-
trolling the behavior of the model parameters. Some recently proposed penalties
over HMM parameters (either transition or emission distribution parameters)
include the pairwise mean difference penalty [21], the smoothing penalty [32],
the sparse penalty [31], the self-transition penalty [22] and the determinantal
point process [17] penalty [20].

Each of the penalties introduced in previous work is however designed for a
single HMM and is consequently not particularly suited for training a mixture of
HMMs. In particular, these penalties do not introduce any dependencies between
the HMMs. In contrast, we introduce a novel penalty, the orthogonality penalty,
by using the inner product as a distance measure between pairs of HMMs, or
more exactly, their transition matrices. Distance measures between HMMs have
been used also previously for the purpose of clustering sequences, however, with-
out using MHMMs [15]. Specifically, the method in [15] do not use HMMs to
represent clusters of sequences; instead, each sequence is represented by a unique
HMM and the actual clustering is performed on the HMMs, that is, subsequent
to the construction of the HMMs. When it comes to incorporating the concept
of orthogonality, a similar idea was exploited in [3], where orthogonality among
the weights of a neural network was used as a constraint to improve maximum
likelihood estimation w.r.t. initialization sensitivity.

In this work, we modify the standard EM to infer an MHMM, where the
novel orthogonality penalty is used to push the EM algorithm to avoid a poor
local optimum, by increasing the distance between the transition matrices of
each pair of HMMs. We term the modified EM procedure as the Orthogonal
Mixture of Hidden Markov Models (oMHMM). A key feature of the oMHMM
method, which is missing in an MHMM due to the independence of the transi-
tion matrices, is that the estimation of each transition matrix may be affected
by all other transition matrices (representing different clusters); hence realizing
a global context. As we aim to improve upon the standard EM when inferring an
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MHMM, we compare the proposed oMHMM to the standard EM implementa-
tion of MHMM, as, to the best of our knowledge, no other approaches to infer
MHMMs have been put forward in the literature∗.

In the next section, we provide notation and background on HMMs, MHMMs,
and a linear algebraic definition of orthogonality. In Section 3, we introduce
the oMHMM; our novel approach. In Section 4, we evaluate and compare it to
standard EM for MHMM. Finally, in Section 5, we summarize the main findings
and point out directions for future research.

2 Preliminaries

In this section, we first provide definitions concerning clustering of sequences
using mixtures of HMMs and, then, a short description of orthogonality.

2.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a probabilistic graphical model [5] in which
a sequence of emitted symbols (observation sequence) is observed, but the se-
quence of states (state sequence) emitting the observation sequence, is hidden
and follows a Markov structure. The Markov property implies that the next
state in the state sequence only depends on the current state. We assume that
the input sequences have length M . The observation sequence is denoted as
Y = {y1, . . . , yM} and the state sequence is denoted as C = {c1, . . . , cM}.
Each state in C takes a value j for j = 1, . . . , J ; we denote each state at
step m with value j as cm,j for m = 1, . . . ,M . An HMM is parameterized by
initial probabilities, p(c1,j), transition probabilities, p(cm,j |cm−1,i), and emis-
sion probabilities, p(ym|cm,j). These sets of parameters are referred to as ρ, A,
and O respectively, jointly referred to as θ. Inference of HMM parameters can
be conducted by maximizing the likelihood using the Expectation Maximiza-
tion (EM) algorithm [6], which consists of two steps: the E-step, calculating
Q(θ, θold) = EC|Y,θold

[
logP (Y,C|θ)

]
, the expected value of logP (Y,C|θ), the

complete-data log likelihood [6], w.r.t. the conditional distribution of the hidden
states given the observed data and old parameter estimates (θold); the M-step,
maximizing the Q function calculated in the E-step w.r.t. the parameters of
interest. The E-step involves calculating the marginal posterior distribution of
a latent variable cm,j , denoted as γ(cm,j), and the joint posterior distribution
of two successive latent variables, ε(cm−1,i, cm,j). For details of the calculations
of these terms, we refer to [6]. In the M -step, ρ, O, and A are updated using
γ(cm,j) and ε(cm−1,i, cm,j). The M -step concerns a maximization problem per
parameter set; here we focus on the maximization problem regarding the tran-
sition probabilities, A, as the contribution of this work involves this problem.
Therefore, the maximization problem shown in Eq 1 results from maximizing the

∗Spectral learning of MHMM [30] improves the time complexity and does not im-
prove the clustering. Sparse MHMM [24], requiring data coming from a set of entities
connected in a graph with a known topology, can be used together with oMHMM.



4 N. Safinianaini et al.

Q function w.r.t. Aij which is the transition probability of moving from state i

to state j; the optimization is subject to the constraint
∑J
j=1Aij = 1.

max
Aij

M∑
m=2

J∑
i=1

J∑
j=1

ε(cm−1,i, cm,j) logAij (1)

2.2 Mixtures of Hidden Markov Models

A Mixture of Hidden Markov Models (MHMM) is a probabilistic graphical model
where each observation sequence is generated by a mixture model [6] with K
components, each representing a cluster which corresponds to a unique HMM
parameter setting. We denote each observation sequence as Yn = {yn1, . . . , ynM}
and Zn is the latent variable concerning the cluster assignment of Yn, for n =
1, . . . , N . An observation sequence Yn, belonging to the k-th (k takes a value
between 1 and K) cluster, arises from an HMM with state sequence Cn =
{cn1 , . . . , cnM} parameterized by ρk, Ok, Ak. The parameter defining the prob-
ability of the observation sequences belonging to component k, the mixture
probability, is πk with

∑K
k=1 πk = 1. Performing EM on the MHMM, all pa-

rameters, ρ1:K , O1:K , A1:K , and π1:K , are updated at each iteration. Note that
using these parameters, the posterior probability of each observation sequence
belonging to component k can be calculated; i.e. p(Zn = k|Yn, θold). For details
on the update equations, we refer to [24]. Similar to the previous section, the
E-step concerns calculating Q(θ, θold) := EC,Z|Y,θold

[
log p(Y,C, Z|θ)

]
and M -

step maximizing the Q function. Here we focus again on the M -step, where the
maximization problem concerns the transition matrices, i.e., maximizing the Q
function w.r.t. Akij ; the probability of transition from state i to j concerning

component k. The maximization is formulated in Eq 2 subject to
∑J
j=1Akij = 1.

max
Akij

K∑
k=1

N∑
n=1

M∑
m=2

J∑
i=1

J∑
j=1

εk(cnm−1,i, c
n
m,j) logAkij (2)

Algorithm 1 MHMM

1: procedure learn(Y1:N ):
2: Initialise θ := {ρ, O, A, π}
3: repeat
4: E-step: calculate Q(θ, θold) := EC,Z|Y1:N ,θold

[
log p(Y1:N , C, Z|θ)

]
5: M-step: update A by Eq. 2
6: update ρ, O, π
7: until convergence
8: return θ

The EM algorithm concerning an MHMM is illustrated in Algorithm 1. For
writing simplicity, we use MHMM when referring to this algorithm.
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2.3 Orthogonality

In linear algebra, two vectors, a and b, in a vector space are orthogonal when,
geometrically, the angle between the vectors is 90 degrees. Equivalently, their in-
ner product is zero, i.e. 〈a,b〉 = 0. Similarly, the inner product of two orthogonal
matrices is also zero. For matrices A and B, 〈A,B〉 := trace(ATB) [14] where
trace refers to the sum of the elements of the diagonal of a matrix. The inner
product of square matrices, trace(ATB), is calculated as the following [14]:

trace(ATB) =

J∑
i=1

J∑
j=1

AijBij where A,B ∈ RJ×J (3)

3 Orthogonal Mixture of Hidden Markov Models

In this section we describe our solution, Orthogonal Mixture of Hidden Markov
Models (oMHMM), to avoid a poor local optimum in the MHMM. In a mixture
of HMMs, each HMM, and consequently each transition matrix, corresponds
to a different cluster. Therefore, we consider a transition matrix as a cluster
representation. The underlying idea of the oMHMM method is to direct the
search for a transition matrix solution away from candidate solutions that are
very similar, i.e., not fully exploiting the power of the mixture model. This is
achieved by increasing the distance between transition matrices—equivalently,
the dissimilarity of the clusters—at each iteration of EM. A geometric intuition of
the idea is illustrated in Fig 1, where we use orthogonality as a distance measure
between cluster representations (transition matrices). Intuitively, as the angle
between the representations of the two clusters increases, the dissimilarity of
those clusters increases.

In order to enforce the concept of distant transition matrices, we propose a
penalty, orthogonality penalty, for the objective function described in Eq. 2 in
the M -step of the EM algorithm. Concretely, the penalty is the sum of all the
pairwise inner products of the transition matrices. By adding the orthogonality
penalty, having a form as in Eq. 3, to the original maximization problem in
Eq. 2, we achieve the penalized objective function presented in Eq. 4 subject
to
∑J
j=1Akij = 1. By introducing a subtraction of the penalty, maximizing the

objective function implies minimizing the inner product; i.e. maximizing the
orthogonality. Note that λ is the hyperparameter for the penalty.

max
Akij

K∑
k=1

N∑
n=1

M∑
m=2

J∑
i=1

J∑
j=1

[
εk(cnm−1,i, c

n
m,j) logAkij − λ

K∑
k′ 6=k

trace(ATkijAk′ij)
]

(4)

Plugging the right hand side of Eq. 3 into Eq. 4, we get the following:

max
Akij

K∑
k=1

N∑
n=1

M∑
m=2

J∑
i=1

J∑
j=1

εk(cnm−1,i, c
n
m,j) logAkij − λ

K∑
k′ 6=k

J∑
i=1

J∑
j=1

AkijAk′ij (5)
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Fig. 1. A geometric view of the orthogonality of representations in clustering: each
vector corresponds to a cluster representation, which can be expressed as any linear
algebraic subspace. As the angle between representations of the two clusters increases,
so does the dissimilarity between those clusters.

We solve the maximization problem stated in Eq. 5 by using the “cvxpy”
Python library [11, 2], as numerical optimization methods are needed due to
the non-closed form solution to this optimization problem. Namely, setting the

derivative of Eq. 5 w.r.t. Akij ,
∑N
n=1

∑M
m=2

ε(ck,n
m−1,i,c

k,n
m,j)

Akij
+ δ −

∑K
k′ 6=k Ak′ij , to

zero cannot be solved by isolating the variable Akij , where δ is the Lagrange

multiplier of the constraint
∑J
j=1Akij = 1.

A key feature of the oMHMM, lacking in the MHMM due to the treatment of
transition matrices as independent, where the occurrence of one does not affect
the probability of the occurrence of another, is that the estimation of a transition
matrix, Ak, will be affected by all other transition matrices, Ak′ ∀k′ 6= k; hence
realizing a global context—parameters of all clusters are pulled into context.

Algorithm 2 summarizes oMHMM, which is a penalized EM. Note that all
of the calculations are identical to the MHMM (Algorithm 1), except for line 5,
where the update of transition matrices, A, is affected by Eq. 5.

4 Experiments

Our experimental objective is twofold: firstly, we aim to investigate the relative
performance of the MHMM and oMHMM methods (Algorithms 1, 2) on various
real-world datasets; we then use simulated datasets, inspired by the real-world
datasets, to study the behavior of oMHMM in a more controlled manner, where
the ground truth transition matrices are known.
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Algorithm 2 oMHMM

1: procedure learn(Y1:N ):
2: Initialise θ := {ρ, O, A, π}
3: repeat
4: E-step: calculate Q(θ, θold) := EC,Z|Y1:N ,θold

[
log p(Y1:N , C, Z|θ)

]
5: M-step: update A by Eq. 5
6: update ρ, O, π
7: until convergence
8: return θ

For the implementation of oMHMM and the complete test results, we refer
to https://github.com/negar7918/oMHMM.

4.1 Performance metrics

When measuring method performance, we use v-measure [26] concerning clus-
tering results (in all of the experiments performed, we have access to the cluster
labels). The v-measure, which gives a score between 0% (imperfect) and 100%
(perfect), captures the homogeneity and completeness properties, that is, it mea-
sures how well a cluster contains only its own members and how many of those
members. Note that the rand index [25] provides very similar results as the
v-measure, and is for that reason not included here.

For the real-world datasets, to extend the investigation of clustering perfor-
mance, we use accuracy in addition to v-measure; accuracy is commonly used
[30, 15] despite the focus on unsupervised learning. Using accuracy, we can show
the proportion of correctly estimated clusters. Moreover, we extend the investi-
gation by reporting the number of EM iterations, measuring the computational
cost (the elapsed time for each iteration of oMHMM and MHMM are nearly
equal). As the goal of experimenting on the simulated datasets is to examine
the clustering performance hypothesis, i.e., an increase of the orthogonality be-
tween the true transition matrices leads to increased clustering performance, it
is sufficient to use v-measure.

The experiments are conducted using different random initializations, where
each initialization is used by both of the methods, MHMM and oMHMM. In
the tables below, the result of the better performing model is highlighted with
a bold font.

4.2 Experiments with biological data

We perform experiments on a previously published biological dataset† stemming
from single-cell whole-genome sequencing from 18 primary colon cancer tumor
cells and 18 metastatic cells from matched liver samples for one patient referred

†available from the NCBI Sequence Read Archive (SRA) under accession number
SRP074289; for pre-processing of the data, see [18].
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to as CRC2 in [18]. In this work, we cluster CRC2 patient data using the ge-
nomic sequence of chromosome 4; the sequence comprises 808 genomic regions
(sequence length of 808) where each region bears the characteristic of that region
by a count number. In other words, the nature of the data is a count number.
As mentioned in [18], it is reasonable that the primary tumor cells from the
colon and the metastatic cells from the liver should cluster separately; therefore,
we consider to cluster the sequence data into primary and metastatic clusters.
Note that, for the purpose of evaluation, we know which cell sequence belongs to
which cluster according to [18]. In order to perform clustering, we use a mixture
of HMMs, where each cell sequence with a length of 808 represents an obser-
vation sequence and each HMM comprises hidden variables with three states,
where the states correspond to the copy numbers for chromosome 4 used in [18].
In Fig. 2, illustrating metastatic and primary cancer cells, we can observe how,
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Fig. 2. The average counts of metastatic and primary cancer cells, per sequence posi-
tion.
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Fig. 3. The count data concerning two cells: M-67 metastatic and P-8 primary.

on average, the depth of the count data concerning metastatic cells reach lower
values than the case of primary cells. Moreover, we can see that the variation
of the counts across the sequence position is higher in metastatic than primary
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Table 1. Accuracy, v-measure, and number of iterations are compared between the
MHMM and oMHMM.

% V-measure

initialization MHMM oMHMM

A 4% 59%

B 69% 84%

% Accuracy

initialization MHMM oMHMM

A 47% 91%

B 94% 97%

# Iterations

initialization MHMM oMHMM

A 5 4

B 3 2

cells. The variations occurring throughout the sequence data are commonly used
to perform clustering in cancer research [18]. These variations, per cluster, can
be modeled as state transitions in an HMM in the mixture model. In Fig. 3, two
cells are shown, each belonging to a different cluster: M-67 from the metastatic
cluster and P-8 from the primary cluster. Note that, it is harder to see their
difference compared to the difference between the average of metastatic and pri-
mary cells illustrated in Fig. 2. However, we can still see that they follow the
patterns in Fig. 2; i.e., the lower counts belong to the metastatic cell (M-67) and
the variation of the counts is higher in M-67 compared to P-8.

After performing the clustering of metastatic- and primary cells, using the
MHMM and oMHMM methods, we calculate the resulting v-measure and accu-
racy measures. Moreover, we give an account of the number of EM iterations
for each method. We run the methods on the random initializations A and B
concerning transition matrices; initialization A has a Dirichlet distribution prior
with parameters set to 0.1 for each row of the transition matrix, and B follows
a discrete uniform distribution (the choices of the priors are inspired by [3, 30]).
We set the orthogonality penalty’s hyperparameter to 1, allowing for a full effect
of the orthogonality penalty. Table 1 shows that the oMHMM outperforms the
MHMM for both initializations w.r.t. v-measure, accuracy, and the number of
iterations. The highest v-measure and accuracy are 84% and 97%, respectively,
and the maximum improvement is 55 percentage points w.r.t. v-measure and
44 percentage points w.r.t. accuracy, for initialization A. Finally, looking at the
table concerning the number of iterations, we can observe that the oMHMM out-
performs the MHMM with one iteration fewer required by the oMHMM than
that for the MHMM. The fewer number of iterations implies a faster convergence.

4.3 Experiments with handwritten digit data

We cluster handwritten digits from the so-called “pen-based recognition of hand-
written digits” dataset in the UCI machine learning repository [4]. We repeatedly
cluster datasets obtained by restricting the entire dataset to two digits at a time
and considering two clusters similar to [30]; despite of oMHMM being capable
of multi-class clustering. In each such experiment, we use two and four hidden
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states in the MHMM and oMHMM. The orthogonality penalty hyperparame-
ter is, as previously, set to 1 and the random initializations A and B from the
previous section are used. First, using initialization A, we compare the MHMM
and oMHMM performance, see Table 2. In the v-measure and accuracy tables,
the MHMM and oMHMM are compared per number of hidden states e.g., the
oMHMM outperforms the MHMM w.r.t. accuracy (83% vs. 43%) on the “digit 6
vs 7” dataset when using four hidden states. We make the following two observa-
tions concerning the results presented in Table 2: (i) the oMHMM outperforms
the MHMM and achieves the v-measures 36%, 29%, and 7%, corresponding to
accuracies 83%, 76%, and 59%; (ii) the total number of iterations is reduced
approximately to one third for all of the datasets. As shown in Table 3 for ini-
tialization B, the oMHMM outperforms the MHMM with v-measures 91%, 38%,
28%, 18%, and 10% corresponding to accuracies 98%, 78%, 73%, 68%, and 60%.
For all of the datasets, the total number of iterations for the oMHMM is only
20% of that for the MHMM.

For each of the four datasets (“digit 6 vs 7”, “digit 2 vs 9”, “digit 4 vs 2”,
and “digit 5 vs 8”), the oMHMM results in the best v-measure and accuracy:
(i) the highest v-measure are 91%, 29%, 18%, and 10%, respectively; (ii) the
accuracies are 98%, 76%, 68%, and 60%, respectively. Note that in each of the
experiments, the oMHMM results in a v-measure and accuracy that are equal
to or greater than those of the MHMM. The greatest v-measure improvement
obtained by the oMHMM is 38 percentage points increment for the dataset “digit
6 vs 7” and two states, Table 3. As shown in Table 2, the oMHMM results in
the greatest accuracy increase, 40 percentage points increment, for “digit 6 vs
7” and four states. Finally, the oMHMM outperforms the MHMM with respect
to the number of iterations, reducing the computational cost to approximately
20-50% of that achieved by the MHMM.

4.4 Experiments with hand movement data

We perform experiments on the Libras movement dataset from the UCI machine
learning repository [4], in which there are 15 classes of hand movements. Exper-
iments are performed similarly to the previous section. We repeatedly cluster
datasets obtained by restricting the entire dataset to two hand movements at a
time.

First, using initialization A, we compare the MHMM and oMHMM perfor-
mance, see Table 4. We can see that the oMHMM outperforms the MHMM and
achieves v-measures 34%, 3%, 34%, 13%, 1%, and 17% corresponding to accura-
cies 75%, 60%, 75%, 71%, 54%, and 62%. Note that the accuracy achieved by the
oMHMM is greater than the one from the MHMM for the “2 vs 1” dataset when
using two hidden states; however, the v-measure is the same for both methods.
The total number of iterations is reduced for the “13 vs 15” dataset and is almost
unchanged for the other datasets.

As shown in Table 5 for initialization B, the oMHMM outperforms the
MHMM with v-measures of 13%, 2%, 13% and 1%; however, w.r.t. accuracy,
the oMHMM outperforms the MHMM on more accounts with values 73%, 71%,
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Table 2. Using initialization A, accuracy, v-measure, and number of iterations are
compared between the MHMM and oMHMM. S shows the number of hidden states.

% V-measure

Dataset MHMM oMHMM
S=2 S=4 S=2 S=4

digit 6 vs 7 5% 2% 5% 36%

digit 2 vs 9 21% 0% 29% 0%

digit 4 vs 2 0% 0% 7% 0%

digit 5 vs 8 1% 0% 1% 0%

% Accuracy

Dataset MHMM oMHMM
S=2 S=4 S=2 S=4

digit 6 vs 7 37% 43% 37% 83%

digit 2 vs 9 73% 47% 76% 47%

digit 4 vs 2 50% 50% 59% 50%

digit 5 vs 8 44% 50% 44% 50%

# Total Iterations

Dataset MHMM oMHMM

digit 6 vs 7 16 5

digit 2 vs 9 17 5

digit 4 vs 2 17 5

digit 5 vs 8 16 6

Table 3. Using initialization B, accuracy, v-measure, and number of iterations are
compared between the MHMM and oMHMM. S shows the number of hidden states.

% V-measure

Dataset MHMM oMHMM
S=2 S=4 S=2 S=4

digit 6 vs 7 0% 60% 38% 91%

digit 2 vs 9 0% 0% 28% 0%

digit 4 vs 2 0% 0% 18% 0%

digit 5 vs 8 0% 0% 10% 0%

% Accuracy

Dataset MHMM oMHMM
S=2 S=4 S=2 S=4

digit 6 vs 7 51% 91% 78% 98%

digit 2 vs 9 48% 48% 73% 48%

digit 4 vs 2 50% 50% 68% 50%

digit 5 vs 8 50% 50% 60% 50%

# Total Iterations

Dataset MHMM oMHMM

digit 6 vs 7 28 15

digit 2 vs 9 31 6

digit 4 vs 2 30 11

digit 5 vs 8 35 7

58%, 71%, 54%, and 52%. The total number of iterations is reduced for the
datasets “15 vs 3” and “3 vs 1”, while unchanged for the other two datasets.

For each of the four datasets (“13 vs 15”, “15 vs 3”, “3 vs 1”, and “2 vs
1”), the oMHMM results in the best v-measure and accuracy: (i) the highest
v-measures are 34%, 34%, 13%, and 17%, respectively; (ii) the accuracies are
75%, 75%, 71%, and 62%, respectively. Note that in each of the experiments,
the oMHMM results in v-measure and accuracy of equal to or greater than those
of the MHMM. The greatest improvement obtained by the oMHMM w.r.t. v-
measure and accuracy concerns the “15 vs 3” dataset using four hidden states
in Table 4, with an increase of 34 and 27 percentage points, respectively.
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Table 4. Using initialization A, accuracy, v-measure, and number of iterations are
compared between the MHMM and oMHMM. S shows the number of hidden states.

% V-measure

Dataset MHMM oMHMM
S=2 S=4 S=2 S=4

13 vs 15 1% 1% 3% 34%

15 vs 3 0% 0% 0% 34%

3 vs 1 4% 0% 13% 1%

2 vs 1 5% 0% 5% 17%

% Accuracy

Dataset MHMM oMHMM
S=2 S=4 S=2 S=4

13 vs 15 54% 54% 60% 75%

15 vs 3 52% 48% 52% 75%

3 vs 1 62% 50% 71% 54%

2 vs 1 60% 50% 62% 62%

# Total Iterations

Dataset MHMM oMHMM

13 vs 15 12 7

15 vs 3 8 9

3 vs 1 8 9

2 vs 1 8 9

Table 5. Using initialization B, accuracy, v-measure, and number of iterations are
compared between the MHMM and oMHMM. S shows the number of hidden states.

% V-measure

Dataset MHMM oMHMM
S=2 S=4 S=2 S=4

13 vs 15 0% 20% 13% 20%

15 vs 3 2% 0% 2% 2%

3 vs 1 0% 6% 1% 13%

2 vs 1 0% 0% 0% 0%

% Accuracy

Dataset MHMM oMHMM
S=2 S=4 S=2 S=4

13 vs 15 50% 64% 71% 73%

15 vs 3 58% 54% 58% 58%

3 vs 1 52% 65% 54% 71%

2 vs 1 50% 50% 50% 52%

# Total Iterations

Dataset MHMM oMHMM

13 vs 15 14 14

15 vs 3 24 8

3 vs 1 18 14

2 vs 1 4 4

4.5 Experiments with simulated data

The goal of this section is to test the following hypothesis: greater orthogonality
between the true transition matrices results in greater improvement achieved
by the oMHMM compared to MHMM. This may only be investigated when
having access to the ground truth (the true transition matrices), which is why
we consider synthetic datasets here. We consider data generated from a given
MHMM, comprising ground truth model parameters (we refer to this model by
MHMM-gen), and evaluate the clustering obtained by each of the MHMM and
the oMHMM from this data. The contribution of the orthogonality penalty is
investigated by comparing the v-measures obtained by the oMHMM and the
MHMM, based on the ground truth cluster labels from MHMM-gen.
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Inspired by the biological data comprising two clusters in Section 4.2, we con-
struct the simulated datasets, assuming the two transition patterns where each
represents an inclination towards a specific state (we assume 3 vs. 4). Moreover,
we consider 50 observation sequences with a length of 800. These sequences form
the first dataset, Scenario 1. To study the behavior of the oMHMM when having
lower orthogonality among the transition matrices in the ground truth model, we
create a new dataset, Scenario 2, where we design the transition matrices so that
they result in lower orthogonality than in Scenario 1. We achieve this by adding
a third HMM (cluster) following a transition pattern similar to one of the two
transition patterns in Scenario 1; this similarity results in lower orthogonality.

Having the ground truth, we evaluate the clustering results produced by the
MHMM and oMHMM. V-measure is used as the main clustering performance
metric. We perform the tests considering the transition matrix initializations
used in the real-world datasets, A and B, to evaluate the orthogonality hypothesis
in the already performed setting. Moreover, we add a third initialization, C, to
extend the evaluation. C holds a Dirichlet distribution prior with parameters set
to 0.5 for each row of the transition matrix.

Regarding the hyperparameters of the orthogonality penalty, λ in Eq. 5, we
define the set of possible values to be {0, 0.1, 0.5, 1}. For each scenario and each
initialization, we tune the value of λ using a separate dataset (with the same size
as the test datasets used subsequently in the experiments) which we never use
again in the following experiments. For each of those separate datasets, we choose
the λ which gives the highest v-measure when performing the oMHMM. In case
of ties among the best-performing values of λ, the highest value is selected.

Scenario 1 Using MHMM-gen, we generate 50 observation sequences of length
800, divided into two clusters. The parameters of the MHMM-gen model are set
as follows. The number of hidden states is set to 4, the emission distribution is a
Poisson distribution with one state-dependent rate per hidden state, randomly
chosen between 80 and 100. We use mixture probabilities of 0.5 for the two
components with transition matrices, A1 and A2. Conceptually, one cluster is
inclined to stay at state 3 and the other at state 4 (these are highlighted as
column 3 and 4 in the matrices below). In order to compare Scenario 1 to Scenario
2 for testing our hypothesis, we use orthogonality which is defined as one minus
the normalized inner product, i.e., 1− <A1,A2>√

<A1,A1>
√
<A2,A2>

. The orthogonality of

the matrices, A1 and A2, is 89%.

A1 =


0 0 .07 .93
0 .003 .007 .99
0 0 .06 .94
0 0 .02 .98

 A2 =


0 .002 .99 .008
0 0 .95 .05
0 0 .92 .08
0 0 .87 .13


The hyperparameter values of the orthogonality penalty, λ, for initializations

A, B, and C are 0, 1, and 1, respectively, after performing hyperparameter tun-
ing as aforementioned. We give account for the v-measure performance of the
MHMM and oMHMM concerning different initializations in the left-hand side
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Table 6. V-measure is compared between MHMMs and oMHMMs for Scenario 1 and
2.

% V-measure Scenario 1

initialization MHMM oMHMM

A 29% 29%

B 40% 87%

C 0% 11%

% V-measure Scenario 2

initialization MHMM oMHMM

A 72% 72%

B 62% 72%

C 66% 72%

of Table 6. We can observe that the oMHMM outperforms the MHMM with a
47 and 11 percentage points increase in v-measure for initialization B and C,
respectively. Finally, the oMHMM results in the highest v-measure.

Scenario 2 Similar to Scenario 1, we generate observation sequences (a total
of 100), forming three clusters. Each HMM is generated similarly to Scenario
1, except that the sequence length is 200 and the four Poisson rates are set to
1, 3, 9, and 27, respectively, for states 1, 2, 3, and 4. The following transition
matrices are considered for the three HMMs: A1, A2, and A3. A1 and A2 follow
Scenario 1 and A3 is similar to A1, however with less inclination towards state
4. The orthogonality of 65% is achieved, which is 24 percentage points less than
that for Scenario 1 (the orthogonality score is calculated using the same formula
as in Scenario 1).

A1 =


0 0 .07 .93
0 .003 .007 .99
0 0 .06 .94
0 0 .02 .98

 A2 =


0 .002 .99 .008
0 0 .95 .05
0 0 .92 .08
0 0 .87 .13

 A3 =


0 .3 0 .7
0 .4 0 .6
0 .3 0 .7
0 .3 .02 .68


The hyperparameter λ is again tuned using the procedure outlined for Sce-

nario 1. For initialization A, λ = 1 is chosen as it results in the highest v-measure.
For initializations B and C, due to the identical v-measure results, λ = 1 is cho-
sen (following our assumption explained in Section 4.5).

Looking at the right-hand side in Table 6, we can observe that the oMHMM
outperforms the MHMM with a 10 and 6 percentage points increase in v-measure
regarding initialization B and C, respectively. Note that the oMHMM results in
the highest v-measure; however, the oMHMM has equal performance to MHMM,
using initialization A. Comparing these results to the ones from Scenario 1, we
can observe that the contribution of the oMHMM decreases as the orthogonality
among transition matrices decreases. This confirms our hypothesis that the more
orthogonal the ground truth transition matrices are, the greater improvement
can be expected from the oMHMM.

4.6 Discussion of results

The experiments showed that oMHMM can significantly improve MHMM. Con-
cretely, oMHMM was observed to achieve up to a 55 percentage points increase
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w.r.t. v-measure, a 44 percentage points increase w.r.t. accuracy, and was ob-
served to reduce the number of iterations down to a fifth. The experiments
conducted on simulated data confirmed our hypothesis that the more orthogo-
nal the ground truth transition matrices are, the greater improvement may be
obtained by using the oMHMM instead of the standard MHMM. When the or-
thogonality is less pronounced we expect oMHMM to perform equal to MHMM
given that the penalty hyperparameter is properly tuned.

5 Concluding remarks

The use of EM for clustering of sequential data based on an MHMM may lead
to poor local optima. This type of problem is often handled by augmenting the
objective function, in the M -step of EM, with a penalty term. Several differ-
ent penalties have been proposed for the EM algorithm when handling a single
HMM. To tackle the problem for an MHMM, we propose a new penalty, the
orthogonality penalty, which takes multiple HMMs into account. We call the
so obtained EM algorithm oMHMM. The underlying idea is that the cluster-
ing can be expected to be improved when increasing the dissimilarity of clus-
ters based on the orthogonality of the corresponding transition matrices of the
constituent HMMs. We have presented results from experiments in which the
novel algorithm is compared to the standard EM for an MHMM. The results
show that the oMHMM performs on par or better than the standard EM for
an MHMM with respect to v-measure, accuracy, and the number of iterations.
These promising results show that the proposed penalty has a positive effect on
sequence clustering using an MHMM.

One direction for future research is to combine the sparse mixture of HMMs
[24] with the oMHMM. Another direction concerns investigating the theoreti-
cal and statistical properties of the oMHMM, e.g., consistency, efficiency, and
convergence rate. MHMMs, in contrast to HMMs, have not received sufficient at-
tention, e.g., various penalties can be investigated concerning EM for an MHMM.
Finally, observing the high performance of oMHMM on the biological data in this
work, motivates future work on critical biomedical applications. To name some,
one can extend the studies on cancer cell clustering [28] and early prediction of
a therapy outcome [27] by applying the orthogonality constraint.
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